

Hart Beat

Hart Field-Site Group Inc www.hartfieldsite.org.au

6th September, 2012 Issue 20

BIG PROGRAM FOR HART FIELD DAY

The annual Hart Field Day will be held on Tuesday, 18 September, and with more than 30 speakers coming from around the country to present, it will be a one-stop-shop for the latest information on agronomy, varieties, disease and weed control and seeding innovation.

A rolling program of half hour sessions enables visitors to tailor their own program for the day, choosing eight sessions to attend from more than 20 session options.

A highlight of this year's event will be the opportunity for growers from around the Hart district to volunteer to try out the new Harrington Seed Destructor (HSD) on-farm during the upcoming harvest.

Up to 20 farmers will be given the opportunity to have the weed seed "destructor" operating, free of charge, on their property for two days during harvest.

While the first commercial HSD machines are still being manufactured, it is anticipated that a HSD prototype will be on display at the field day.

University of Western Australia research associate professor Dr Michael Walsh will present at the Hart Field Day about this exciting innovation in harvest weed seed control.

"The HSD consistently destroys 90-95 per cent of annual ryegrass, wild radish, wild oats and brome grass seed present in the chaff fraction," he says.

Bevan Wilson from De Bruin Engineering, Mount Gambier, will be on hand to answer any queries about the commercialisation of the HSD.

Also joining Dr Walsh at the Hart Field Day will be WA farmer, and developer of the revolutionary new conveyor belt system for chaff carts, Lance Turner.

Dr Walsh says Lance's innovative new delivery system for chaff carts had created significant interest in WA, and was shown to overcome issues with extended chaff burn time and fire risk.

Clare-based Dr Allan Mayfield will be the lunchtime guest speaker at the event. Having been involved in the Hart Field Day almost since its inception, he has seen the event evolve over the last 30 years.

Coupled with his extensive experience as an agronomist and agricultural consultant, Allan will

provide an engaging lunch-time presentation.

Among other sessions on offer are the control of ryegrass in break crops, especially clethodim resistance; group B tolerant crops and brome grass; snail control; canola agronomy and the management of blackleg and the strategic use of fungicides as well as canola harvest management including harvest timing and direct heading.

Nigel Wilhelm will speak on phosphorus fertilisers and San Jolly will present on pasture production and nutrition, including feed quality.

Exciting new technology including in-furrow liquid injection demonstrations and the SA No-Till Farmers Association's Water-Jet system will be on show.

There will also be speakers addressing a wide range of other agronomy, variety, herbicide and growth regulant information.

There will also be static displays from Rocky River Ag Services and several other groups.

Gates will open at 9am with the official opening at 10am. The first session will begin at 10.30am sharp.

Admission is \$30 (students \$5), with entry entitling visitors to a bronze membership to the Hart Field-Site Group and a copy of the comprehensive Hart Field Day guide. Membership upgrades are available on the day (credit card facilities available).

Full catering is available throughout the day (cash sales only) and a refreshment tent will operate after the event.

For more information visit:

www.hartfieldsite.org.au

Hart

The season so far

Annual rain to date: 210mm (17mm since last report) GSR to date: 131mm

GSR decile: 1 (incorrect in last newsletter) **Current predicted PAW:** 41mm

Crop growth

Variety: Gladius Sowing date: 30th May Nitrogen fertiliser: 44kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Condowie

The season so far Annual rain to date: 231mm (21mm since last report) GSR to date: 145mm

GSR decile: 3.0

Current predicted PAW: 10mm

Crop growth

Variety: Gladius Sowing date: 18th May Nitrogen fertiliser: 42kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date and historical climate data (100yrs) to simulate remainder of the season.

Kybunga

The season so far

Annual rain to date: 293mm (34mm since last report) GSR to date: 206mm

GSR decile: 4

Current predicted PAW: 56mm

Crop growth

Variety: Gladius Sowing date: 17th May Nitrogen fertiliser: 30kgN/ha

This graph shows the chance of acching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Site information as of 6th September 2012

Grain & hay yield predictions

Yield prophet estimate: (Date of report 6/9/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 30 th May (see graph)	Change from last report	Sown 10 th June	Change from last report
Grain	2.7	-0.3	2.4	-0.4

French & Schultz grain yield estimate:

100% WUE: 2.2t/ha, 80% WUE: 1.7t/ha

This model assumes that there is 26mm of stored moisture, 110mm of evaporation and decile 5 (62mm) rainfall for the remainder of the season.

Site information as of 6th September 2012

Grain & hay yield predictions

Yield prophet estimate: (Date of report 6/9/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 18 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	1.8	-0.4	1.6	-0.1

French & Schultz grain yield estimate:

100% WUE: 2.0t/ha, 80% WUE: 1.6t/ha This model assumes that there is 7mm stored moisture, 110mm of evaporation and decile 5 (56mm) rainfall for the remainder of the season.

Site information as of 6th September 2012

Grain & hay yield predictions

Yield prophet estimate: (Date of report 6/9/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 17 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	4.3	+0.1	3.5	0.0

French & Schultz grain yield estimate:

100% WUE: 4.3t/ha, 80% WUE: 3.5t/ha This model assumes that there is 14mm stored moisture, 110mm of

rns model assumes that there is 14mm stored moisture, 110mm of evaporation and decile 5 (103mm) rainfall for the remainder of the season. 140 \neg

5/7/11 5/9/11 5/11/11 5/1/12 5/3/12 5/5/12 5/7/12 5/9/12

Catt Catt	art Field C 3th Septem es open 9am ruiries: Sandy Kim	Jay Progra ber 2012 ^{ber 0427 423 154}	am admin @hartfields	ite.org.au		RUCEN	da canta. ISE M	A Premier cooping field site
Time			MELO	OME & OPENING	Matt Dare, Hart Ch	airman		
10:00am			Choose you	ir own program - ea	ch session lasts fo	r 30 minutes		
	8	н	IJ	¥	z	٩.	ð	Э
10:30	Barley nitrogen	Phosphorus fertilisers	Ryegrass in break crops	Canola varieties	Herbicide tolerance	In-furrow liquid additions	Pulse varieties	Variable rate application
	۵	ш	7	-	£	S	7	W - shed
11:00	Pasture production	Durum varieties & agronomy	Pre-emergent herbicides	Canola agronomy	Pulse agronomy & disease	Group B tolerance & brome	Harvest weed management	Canola harvest management
	ш	ပ	U	_	Σ	z	٩.	F
11:30	Barley nitrogen	Soil pit	Ryegrass in break crops	Wheat varieties	Managing crop growth	Herbicide tolerance	In-furrow liquid additions	Cropping systems & water jet
	A - shed	ш	т	7	¥	0	Ø	>
12:00	Controlling snails	Barley varieties	Phosphorus fertilisers	Pre-emergent herbicides	Canola varieties	Oat varieties	Pulse varieties	Harvest weed management
12:30	LUNCH includ	les address by spec	ial guest speaker DI	R ALLAN MAYFIELD), former Hart Board	member, consultant.	and GRDC Southerr	l Panel member
	в	۵	თ	_		Δ	Я	∍
1:30	Barley nitrogen	Pasture production	Ryegrass in break crops	Wheat varieties	Canola agronomy	Managing crop growth	Pulse agronomy & disease	Variable rate application
	ပ	ш	т	7	۵.	S	T	W - shed
2:00	Soil pit	Barley varieties	Phosphorus fertilisers	Pre-emergent herbicides	In-furrow liquid additions	Group B tolerance & brome	Cropping systems & water jet	Canola harvest management
	Э	_	У	z	0	Ø	N	>
2:30	Durum varieties & agronomy	Wheat varieties	Canola varieties	Herbicide tolerance	Oat varieties	Pulse varieties	Variable rate application	Harvest weed management
	A - shed	D	4	J	Μ	R	S	Т
3:00	Controlling snails	Pasture production	Barley varieties	Canola agronomy	Managing crop growth	Pulse agronomy & disease	Group B tolerance & brome	Cropping systems & water jet
			MMM	/.hartfields	ite.org.au			

Field Program – Speakers

A Controlling snails

Michael Richards, Ag Ex N&Y Regional Landcare Facilitator Mark Bennett, Farmer

B Barley nitrogen & sowing

depth

Kenton Porker, SARDI

C Soil pit

Andrew Harding, Rural Solutions SA Rebecca Tonkin, Rural Solutions SA

D Pasture production

San Jolly, Productive Nutrition

E Durum varieties & agronomy

Michael Quinn, Australian Grain Technologies Mark Hill, Durum Grower's Association of SA

F Barley varieties

Jason Eglinton, University of Adelaide

G Controlling ryegrass in

break crops Sam Kleemann, University of Adelaide

H Phosphorus fertilisers

Nigel Wilhelm, SARDI

I Wheat varieties

Rob Wheeler, SARDI

J Pre-emergent ryegrass

control Peter Boutsalis, University of Adelaide

K Canola varieties

Trent Potter, SARDI

L Canola agronomy

Angela Van De Wouw, University of Melbourne

M Managing crop growth

Jason Sabeeney, Syngenta Jeff Braun, Agrilink Consultants

N Oilseed & legume herbicide tolerance

Sam Holmes, Holmes Farm Consulting Patrick Redden, Rural Directions

O Oat varieties

Pamela Zwer, SARDI

P In-furrow liquid additions

Peter Burgess, Liquid Systems Paul Lush, Farmer

Q Pulse varieties

Wayne Hawthorne, Pulse Australia Larn McMurray, SARDI

R Pulse agronomy & disease

Jason Brand, Department of Primary Industries, Vic. Jenny Davidson, SARDI

S Group B tolerance & brome

Andre Sabeeney, Crop Care Michael Zerner, University of Adelaide

T Cropping systems & water-jet

Greg Butler, SANTFA

U Variable rate application

Sam Trengove, SPAA Michael Wells, Precision Cropping Technologies

V Managing weed seeds at harvest

Michael Walsh, University of Western Australia Lance Turner, Farmer, WA

W Canola harvest management

Kathi Hertel, Primary Industries, Industry & Investment NSW

Spalding

The season so far

Annual rain to date: 257mm (34mm since last report) GSR to date: 156mm GSR decile: 1.5

Current predicted PAW: 46mm

Crop growth

Variety: Gladius Sowing date: 18th May Nitrogen fertiliser: 44kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Farrell Flat

The season so far

Annual rain to date: 250mm (34mm since last report) GSR to date: 176mm

GSR decile: 1.5 Current predicted PAW: 60mm

Crop growth

Variety: Scout Sowing date: 15th May Nitrogen fertiliser: 30kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Tarlee

The season so far

Annual rain to date: 308mm (40mm since last report) GSR to date: 224mm

GSR decile: 2.5

Current predicted PAW: 57mm

Crop growth Variety: Scout Sowing date: 12th May Nitrogen fertiliser: 50kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Site information as of 6th September 2012

Grain & hay yield predictions

Yield prophet estimate: (Date of report 6/9/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 18 th May (see graph)	Change from last report	Sown 5 th June	Change from last report	
Grain	3.7	0.0	3.3	0.0	

French & Schultz grain yield estimate:

100% WUE: 2.9t/ha, 80% WUE: 2.3t/ha

This model assumes that there is 22mm stored moisture, 110mm of evaporation and decile 5 (78mm) rainfall for the remainder of the season.

Site information as of 6th September 2012

Grain & hay yield predictions

Yield prophet estimate: (Date of report 6/9/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 15 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	4.4	-0.2	3.5	-0.4

French & Schultz grain yield estimate:

100% WUE: 3.4t/ha, 80% WUE: 2.7/ha

This model assumes that there is 15mm stored moisture, 110mm of evaporation and decile 5 (86mm) rainfall for the remainder of the season.

Site information as of 6th September 2012

Grain & hay yield predictions

Yield prophet estimate: (Date of report 6/9/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 12 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	4.8	-0.7	4.6	-0.6

French & Schultz grain yield estimate:

100% WUE: 4.5t/ha, 80% WUE: 3.6/ha

This model assumes that there is 25mm stored moisture, 110mm of evaporation and decile 5 (88mm) rainfall for the remainder of the season.

Hart Beat

Grains Research & Development Corporation

MID NORTH FARMERS Would you like to trial the Harrington Seed Destructor in your paddock this harvest?

For your opportunity, hear Dr Michael Walsh speak at the HART FIELD DAY and register now to attend this workshop:

HARVEST – AN OPPORTUNITY TO CART, CRUSH OR CREMATE WEED SEEDS

Friday 21st September 8:30am – 12:30pm Blyth Cinema

Harvest Weed Seed Control - Dr Michael Walsh (AHRI)

How to burn 10,000 ha of windrows - Andrew Messina (Farmer, Mullewa)

Chaff carts and weed management - Lance Turner (Farmer, Corrigin)

The Harrington Seed Destructor - *Ray Harrington (Farmer, Darkan)*

Ten years of IWM smashes ryegrass seed banks by 98% over 31 focus paddocks

www.hartfieldsite.org.au

Registration and Enquiries:

Sandy Kimber | SECRETARY | 0427 423 154 | admin@hartfieldsite.org.au

Rainfall and water soil characteristics for WUE sites

	Average annual		Pre-sowing soil	Pre-sowing	Plant Available
Site	rainfall (mm)	Soil type	moisture (0-90cm)(mm)	soil nitrogen (0-90cm)(kg/ha)	Water Capacity (mm)
Condowie	350	Sandy loam	13	114	127
Hart	400	Sandy clay loam	15	65	201
Spalding	430	Red brown earth	36	94	150
Tarlee	470	Clay loam over clay on rock	95	170	163
Kybunga	428	Friable clay loam	10	159	263
Farrell Flat	474	Red clay loam over clay	31	87	173

HART FIELD-SITE GROUP INC – Contact information

Sponsorship enquiries: Matt Dare, Chairman, 0407 463 001 Trials information: Roy Rogers, Trials Manager, 0488 045 045 Peter Hooper, 0427 225 590 Membership / Admin enquiries: Sandy Kimber, Secretary 0427 423 154 admin@hartfieldsite.org.au

MID NORTH

HIGH RAINFALL ZONE

Disclaimer: Yield Prophet® information is used entirely at your own risk. You will accept all risks and responsibility for losses, damages, costs and other consequences of using Yield Prophet® information and reports. To the maximum extent permitted by law, APSRU and BCG excludes all responsibility and liability to any person arising directly or indirectly from using the information generated by Yield Prophet® information and reports. To the maximum extent permitted by law, APSRU and BCG excludes all responsibility and liability to any person arising directly or indirectly from using the information generated by Yield Prophet® does not generate recommendations or advice, it is only a guide and must be combined with local paddock and district knowledge. APSIM does not take into

Important Notice: Yield Prophet® does not generate recommendations or advice, it is only a guide and must be combined with local paddock and district knowledge. APSIM does not take into account weed competition, pest/disease pressure, pesticide/herbicide damage, farmer error, or extreme events (such as extreme weather, flood and fire). For more information about APSIM or Yield Prophet® please visit or www.yieldprophet.com.au.

