

Hart Beat

Hart Field-Site Group Inc www.hartfieldsite.org.au

26th July 2012 Issue 18

NEW TRIALS AT HART IN 2012

- Canola agronomy: comparing the performance of commercially produced seed with farmer retained seed, and seed treatments.
- Ryegrass control in canola: investigating pre and post emergent herbicides and timing with regard to weather conditions.
- In-furrow liquid additions: demonstrating in-furrow application technologies for broad acre cropping.
- 'Crystal Green': a SANTFA conducted trial in lentils demonstrating the use of a potential cropping input product derived from industrial waste.
- Carbon trial: a DAFF collaborative trial including Hart, BCG and other cropping systems sites to investigate long term impact on soil carbon of various treatments or farming practices.
- Barley seeding depth: comparison of seeding depth, seed treatment and varieties.

PLEASE NOTE: The soil moisture graphs for Hart and Tarlee were incorrect in our previous newsletter. Please disregard this information.

Durum variety response to nitrogen fertiliser

In 2011 a trial at Hart examined durum varieties against nitrogen rate and timing, aiming to achieve 13% protein and to minimise downgrading.

The trial included 4 varieties – Caparoi, Tjilkuri, WID803 (breeders line) and Hyperno.

All the varieties and nitrogen strategies produced a similar grain yield, averaging 2.70t/ha.

Caparoi had superior grain and test weights and Hyperno had the highest protein. Hyperno and WID803 tended to have lower grain weights, resulting in higher grain screenings. WID803 produced 3.5% screenings in the nil nitrogen treatment but increased by 1% with every extra 40 kg N/ha, to reach 9.8% in the highest nitrogen treatment (160 kg N/ha).

Generally, for all the varieties, increasing the nitrogen rate at GS31 (1st node) decreased grain and test weights. However, grain protein increased with extra nitrogen.

Splitting the nitrogen between 1st node (GS31) and late flowering (GS59) did not reduce the grain or test weight to the same extent.

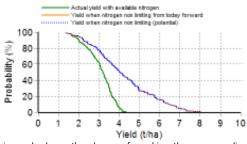
Variety	Grain yield (t/ha)	Grain weight (mg)	Protein (%)	Test weight (kg/hL)
Caparoi	2.70	38.8	13.8	83.0
Hyperno	2.50	32.3	14.3	78.7
Tjilkuri	2.70	34.5	13.8	79.0
WID803	2.80	28.0	13.9	78.0
LSD (0.05)	0.12	0.94	0.28	0.62

Nitrogen treatment	Grain yield (t/ha)	Grain weight (mg)	Protein (%)	Test weight (kg/hL)
Nil N	2.70	36.8	10.5	82.0
40 kgN@GS31	2.70	34.0	13.2	80.3
80 kgN@GS31	2.70	32.7	14.2	79.4
120 kgN@GS31	2.60	32.1	15.0	78.5
160 kgN@GS31	2.60	31.5	15.7	78.2
60 kgN@GS31 + 40 kgN@GS59	2.70	33.5	14.3	79.4
LSD (0.05)	ns	1.0	0.38	0.84

Hart

The season so far

Annual rain to date: 183mm (27mm since last report) GSR to date: 105mm


GSR decile: 2.0

Current predicted PAW: 80mm

Crop growth

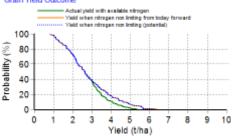
Variety: Gladius Sowing date: 30th May Nitrogen fertiliser: 44kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Condowie

The season so far


Annual rain to date: 196mm (19mm since last report) GSR to date: 110mm GSR decile: 4.0

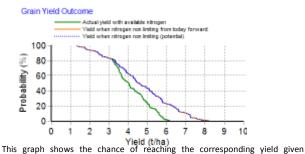
Current predicted PAW: 45mm

Crop growth Variety: Gladius Sowing date: 18th May

Nitrogen fertiliser: 42kgN/ha

Grain Yield Outcom

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.


Kybunga

The season so far

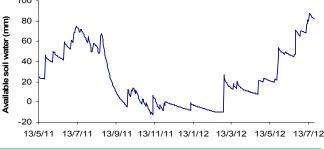
Annual rain to date: 226mm (39mm since last report) GSR to date: 136mm GSR decile: 3.0 Current predicted PAW: 73mm

Crop growth

Variety: Gladius Sowing date: 17th May Nitrogen fertiliser: 30kgN/ha

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Site information as of 23rd July 2012


Grain & hay yield predictions

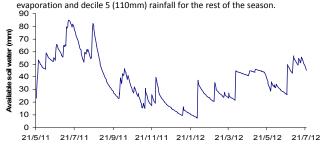
Yield prophet estimate: (Date of report 23/07/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 30 th May (see graph)	Change from last report	Sown 10 th June	Change from last report
Grain	3.6	+0.1	3.3	+0.1

French & Schultz grain yield estimate:

100% WUE: 3.2t/ha, 80% WUE: 2.6/ha This model assumes that there is 26mm stored moisture, 110mm of evaporation and decile 5 (139mm) rainfall for the rest of the season.

Site information as of 23rd July 2012


Grain & hay yield predictions

Yield prophet estimate: (Date of report 23/07/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 18 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	2.6	+0.1	2.2	0.0

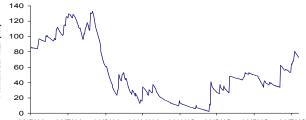
French & Schultz grain yield estimate:

100% WUE: 2.3t/ha, 80% WUE: 1.9/ha This model assumes that there is 7mm stored moisture, 110mm of evanoration and decile 5 (110mm) rainfall for the rest of the season

Site information as of 23rd July 2012

Grain & hay yield predictions

Yield prophet estimate: (Date of report 23/07/2012) These estimates are based on a 50% probability


Yield t/ha	Sown 17 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	4.2	0.0	3.7	0.0

French & Schultz grain yield estimate:

(IIII)

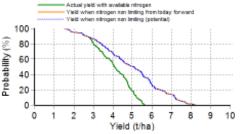
Vailable soil

100% WUE: 4.5t/ha, 80% WUE: 3.6/ha This model assumes that there is 14mm stored moisture, 110mm of evaporation and decile 5 (186mm) rainfall for the rest of the season.

11/5/11 11/7/11 11/9/11 11/11/11 11/1/12 11/3/12 11/5/12 11/7/12

Spalding

The season so far


Annual rain to date: 209mm (33mm since last report) GSR to date: 108mm GSR decile: 2.0

Current predicted PAW: 81mm

Crop growth

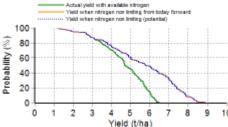
Variety: Gladius Sowing date: 18th May Nitrogen fertiliser: 44kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Farrell Flat

The season so far


Annual rain to date: 192mm (43mm since last report) GSR to date: 118mm

GSR decile: 1.5 Current predicted PAW: 75mm

Crop growth

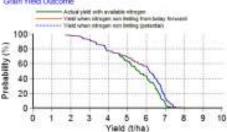
Variety: Scout Sowing date: 15th May Nitrogen fertiliser: 30kgN/ha

Grain Yield Outcome

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Tarlee

The season so far


Annual rain to date: 235mm (42mm since last report) GSR to date: 152mm

GSR decile: 3.0 Current predicted PAW: 82mm

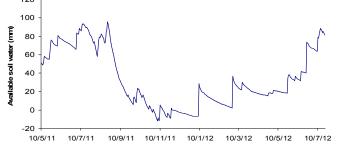
Current predicted PAW.

Crop growth

Variety: Scout Sowing date: 12th May Nitrogen fertiliser: 50kgN/ha

This graph shows the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Site information as of 23rd July 2012


Grain & hay yield predictions

Yield prophet estimate: (Date of report 23/07/2012) These estimates are based on a 50% probability

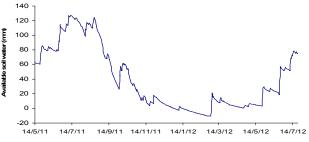
Yield t/ha	Sown 18 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	4.5	+0.2	3.9	+0.1

French & Schultz grain yield estimate:

100% WUE: 3.6t/ha, 80% WUE: 2.9/ha This model assumes that there is 22mm stored moisture, 110mm of evaporation and decile 5 (159mm) rainfall for the rest of the season.

Site information as of 23rd July 2012

Grain & hay yield predictions


Yield prophet estimate: (Date of report 23/07/2010) These estimates are based on a 50% probability

Yield t/ha	Sown 15 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	5.3	+0.3	4.3	+0.3

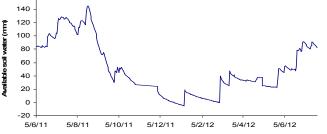
French & Schultz grain yield estimate:

100% WUE: 3.9t/ha, 80% WUE: 3.1/ha

This model assumes that there is 15mm stored moisture, 110mm of evaporation and decile 5 (170mm) rainfall for the rest of the season.

Site information as of 23rd July 2012

Grain & hay yield predictions


Yield prophet estimate: (Date of report 23/07/2012) These estimates are based on a 50% probability

Yield t/ha	Sown 12 th May (see graph)	Change from last report	Sown 5 th June	Change from last report
Grain	5.8	-0.7	5.3	-0.2

French & Schultz grain yield estimate:

100% WUE: 4.8t/ha, 80% WUE: 3.9/ha This model assumes that there is 25mm stored moisture, 110mm of

evaporation and decile 5 (175mm) rainfall for the rest of the season. 160 T

Hart Beat

Hart Winter Walk – Tuesday 24th July 2012

Rohan Kimber, SARDI, spoke about the spore trap on site at Hart

Fiona Hill, Sumitomo, involved in discussions on new herbicide options for marshmallow & other weed control

Rainfall and water soil characteristics for WUE sites

Average annual			Pre-sowing soil	Pre-sowing	Plant Available
Site	rainfall (mm)	Soil type	moisture (0-90cm)(mm)	soil nitrogen (0-90cm)(kg/ha)	Water Capacity (mm)
Condowie	350	Sandy loam	13	114	127
Hart	400	Sandy clay loam	15	65	201
Spalding	430	Red brown earth	36	94	150
Tarlee	470	Clay loam over clay on rock	95	170	163
Kybunga	428	Friable clay loam	10	159	263
Farrell Flat	474	Red clay loam over clay	31	87	173

HART FIELD-SITE GROUP INC – Contact information

Sponsorship enquiries: Matt Dare, Chairman, 0407 463 001 Trials information: Roy Rogers, Trials Manager, 0488 045 045 Peter Hooper, 0427 225 590 Membership / Admin enquiries: Sandy Kimber, Secretary 0427 423 154 admin@hartfieldsite.org.au

HIGH RAINFALL CONS.

Disclaimer: Yield Prophet® information is used entirely at your own risk. You will accept all risks and responsibility for losses, damages, costs and other consequences of using Yield Prophet® information and reports. To the maximum extent permitted by law, APSRU and BCG excludes all responsibility and liability to any person arising directly or indirectly from using the information generated by Yield Prophet®

Important Notice: Yield Prophet® does not generate recommendations or advice, it is only a guide and must be combined with local paddock and district knowledge. APSIM does not take into account weed competition, pest/disease pressure, pesticide/herbicide damage, farmer error, or extreme events (such as extreme weather, flood and fire). For more information about APSIM or Yield Prophet® please visit or www.yieldprophet.com.au.

