Long term cropping systems trial

Sarah Noack, Hart Field-Site Group

Key findings

- There was no significant difference between seeding systems or level of nutrition on grain yield or oil content.
- Soil available N was the same for all seeding systems pre-seeding however, the no till treat had released more available soil N.
- In-season more available N was measured in the high nutrition treatment compared to the medium.

Why do the trial?

To compare the performance of three seeding systems and two nitrogen strategies. This is a rotation trial to assess the longer term effects of seeding systems and higher fertiliser input systems on soil fertility, crop growth and grain yield and quality.

How was it done?

Plot size	35 m x 13 m	Fertiliser	DAP/Urea (22:14:00:05) + 0.8% Zn at seeding @ 100 kg/ha
Seeding date	3 rd June 2015	Medium nutrition	UAN (42:0) @ 87 L/ha on 11 th Aug
Variety	44Y89 (CL) canola @ 5 kg/ha	High nutrition	UAN (42:0)

The trial was a randomised complete block design with three replicates, containing three tillage/seeding treatments and two nitrogen (N) treatments. In addition to this in 2014 all disc treatments were harvested using a stripper front. Both the no-till and strategic stubble height were harvested at 15 cm (Figure 2). The disc, strategic and no-till treatments were sown using local growers Tom Robinson, Michael Jaeschke and Matt Dare's seeding equipment, respectively.

2000	2001	2002	2003	2004	2005	2006	2007
Sloop	Canola	Janz	Yitpi	Sloop	Kaspa	Kalka durum	NZ who at
barley	Calibia	wheat	wheat	barley	peas	Kalka durum JNZ wheat	JINZ WIEat
2008	2009	2010	2011	2012	2013	2014	2015
JNZ wheat	Flagship barley	Clearfield canola	Correll wheat	Gunyah peas	Cobra wheat	Commander barley	44Y89 (CL) canola

Figure 1. Crop history of the long-term cropping systems trial at Hart.

Seeding treatments:

Disc – sown into standing stripper front stubble with John Deere 1980 single disc at 152 mm (6") row spacing, closer wheels and press wheels.

Strategic – worked up pre-seeding, sown with 100 mm (4") wide points at 200 mm (8") row spacing with finger harrows.

No-till – sown into standing stubble in one pass with a Flexicoil 5000 drill, 16 mm knife points with 254 mm (9") row spacing and press wheels.

Nutrition treatments:

Medium – starter fertiliser plus one in-season N application (district practice).

High – starter fertiliser plus two in-season N applications.

All plots were assessed for soil available N (0-20, 20-40, 40-60 and 60-80 cm) on the 15^{th} of April. Plant establishment was assessed by counting 4 x 1 m sections of row across each plot on 26^{th} of June (crop growth stage cotyledon). In season soil N was assessed on 19^{th} of August (crop growth stage bud visible-first flowers). All plots were assessed for grain yield and oil content at harvest (16^{th} November).

Results and discussion

Soil available N to a depth of 80 cm was measured in autumn and ranged between 33 kg N/ha (no-till) and 80 kg N/ha (strategic). The high nutrition treatment had not accumulated more available N compared to the medium treatment.

Pre-seeding the no-till treatment had mineralised more available N, while in season there was no difference between seeding systems. At the time of sampling all plots had received 60 kg N/ha (that is, high N rate had not been applied). The average difference between the two nutrition rates was 43 kg N/ha. This increase in available N can be attributed to the long-term addition of higher N levels in these plots, building up organic N levels and mineralising more available N in-season.

		Availab		
Seeding system	Nutiriton	15th April	19th August	Emergence
		kg N/ha		plants/m ²
Strategic	Medium	51	130	56
	High	108	208	70
Disc	Medium	43	130	57
	High	71	169	68
No-till	Medium	31	157	78
	High	35	169	83
LSD (P≤0.05)				
Tillage		35	ns	22
Nutrition		ns	30	ns
Seeder × Nutrition		ns	ns	ns

Table 1. Available soil nitrogen (kg/ha) pre-seeding and in season and plant emergence (plants/ m^2) for seeding treatments in 2015.

Crop emergence was highest for the strategic and disc seeding systems 84 and 71 plants per square metre, respectively (Figure 2). The no-till treatment had the lowest crop establishment with 51 plants per square metre.

Figure 2. (L-R) 44Y89 (CL) canola sown with a disc seeder into stripper front stubble, no-till treatment and strategic tillage treatment taken on 18th August, 2015.

Seeding treatment did not affect the grain yield of 44Y89 canola, averaging 0.55 t/ha (Table 2.). The canola yields were not reflective of the district given the late sowing date to coincide all seeding equipment. Similarly, there was no difference in oil content, averaging 35.8% across the trial.

Seeding	Nutiriton	Yield	Oil content %	
system	Nutiriton	t/ha		
Strategic	Medium	0.56	35.6	
	High	0.61	35.1	
Disc	Medium	0.53	36.2	
	High	0.54	35.6	
No-till	Medium	0.55	36.4	
	High	0.51	35.7	
LSD (P≤0.05)				
Seeder × Nutr	ition	ns	ns	

Table 2. Grain yield (t/ha) and oil content (%) for nutrition and seeding treatments in 2015. There was no significant interaction ($P \le 0.05$) between seeding system and nutrition.

Acknowledgements

The HFSG thank the South Australians Grains Industry Trust (SAGIT) for providing funding to support this research (H0113). We also thank all the growers who assisted with trial seeding, spraying and harvesting. Thanks to Pete McEwin and Stuart McIntosh for donating seed for the trial.

