HART

BEAT

Yield Prophet® simulations for 8 sites across the Mid-North of SA Condowie Hart | Spalding Farrell Flat Pinery Kybunga | **Eudunda** | Tarlee

DEFINITIONS

HART BEAT definitions

All sites have been characterised for plant available water capacity (PAWC) and bulk density to determine how much of the measured water and nitrogen is available to the crop during the season.

Plant available water capacity (PAWC) – is the difference between the drained upper limit of the soil and the lower extraction limit of a crop over the depth of rooting. It is the maximum water available to a crop from a particular soil type.

Plant available water (PAW) – is the amount of water contained in the soil at a given time minus the crop lower limit.

Growing season rainfall (GSR) – is rainfall for the period between and including April to October.

Decile – is a measure of seasonal rainfall on a scale of 1 to 9. In a decile 7 year, 70% of previous years were dryer, in a decile 3 year 30% of previous years were dryer.

Yield Prophet* is an internet-based service which uses the APSIM wheat prediction model.

The model relies on accurate soil, crop, historical climate data and up to date local

weather information to predict plant growth rates and final hay or grain yields. These are critical measurements specific to the site being analysed and may not fit closely to individual situations. Instead, the predictions will give a realistic guide to seasonal prospects based on a site with similar rainfall and / or soil type.

Using climate data for the current season, Yield Prophet® simulates the soil water, nitrogen processes and crop growth in the paddock. Yield Prophet® calculates the amount of water and nitrogen available to the crop as well as the water and nitrogen demand of the crop.

The **French & Schultz** formula estimates the rainfall limited grain yield based on the growing season rainfall (GSR). It assumes evaporation of 110mm, includes stored water at sowing (30% of Jan to Mar rainfall) and a maximum grain yield potential of 20 kg/mm/ha.

Yield Potential = GSR (Apr-Oct) – Evaporation (110mm) * 20 kg/mm/ha.

Disclaimer: Yield Prophet® information is used entirely at your own risk. You will accept all risks and responsibility for losses, damages, costs and other consequences of using Yield Prophet® information and reports. To the maximum extent permitted by law, APSRU and BCG excludes all responsibility and liability to any person arising directly or indirectly from using the information generated by Yield Prophet®.

Important Notice: Yield Prophet® does not generate recommendations or advice, it is only a guide and must be combined with local paddock and district knowledge. APSIM does not take into account weed competition, pest/disease pressure, pesticide / herbicide damage, farmer error, or extreme events (such as extreme weather, flood and fire). For more information about APSIM or Yield Prophet® please visit or www.yieldprophet.com.au.

SITE INFORMATION

Rainfall and soil water characteristics for all sites

Site	Average annual rainfall (mm)	Soil type	PAWC (mm)	Soil sampling date	Profile depth (cm)	Pre-sowing nitrogen (kg/ha)
Hart	400	Sandy clay loam	206	April 7, 2021	150	61
Spalding	430	Red brown earth	143	April 9, 2021	150	64
Condowie	350	Sandy loam	115	April 7, 2021	150	65
Kybunga	428	Clay loam	262	April 7, 2021	120	69
Farrell Flat	474	Light clay loam	172	April 9, 2021	120	67
Pinery	374	Silty clay loam	79	April 9, 2021	150	60
Eudunda	445	Gravelly loam	96	April 9, 2021	100	63
Tarlee	474	Sandy loam	113	April 9, 2021	150	60

2021 site locations

HART

early tillering

mid tillering

late tillering

tillerina

GS37

head

GS65

Soil type: Sandy clay loam

Crop growth

Variety: Scepter wheat Sowing date: May 1, 2021 Emergence: May 19, 2021

Nitrogen fertiliser: 30 kg N/ha @ seeding

+ 40 kg N/ha July 21

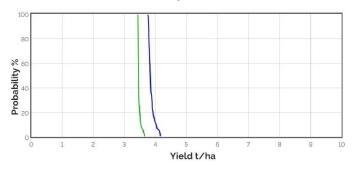
Date of report: October 8, 2021

The season so far

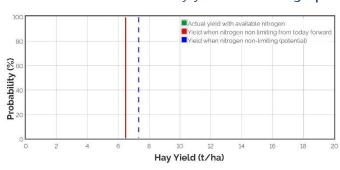
Annual rainfall to date: 253 mm GSR to date: 216 mm

Current GSR decile:

9 mm (4% full) Current predicted PAW:


PAWC: 206 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: 3.7 t/ha also see graphs below Wheat sown May 20: 2.9 t/ha

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions, agronomic inputs to date and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 11 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (21 mm) for the remainder of the growing season.

> 2.8 t/ha 100% WUE

2.2 t/ha 80% WUE

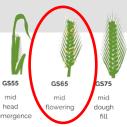
SPALDING

2nd leaf

mid tillering

late tillering

tillering



emerged

SPALDING

Soil type: Red brown earth

early tillering

Crop growth

Scepter wheat Variety: Sowing date: May 1, 2021 Emergence: June 5, 2021

Nitrogen fertiliser: 40 kg N/ha @ seeding

+ 40 kg N/ha July 21

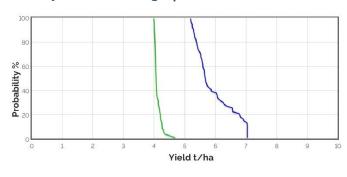
Date of report: October 8, 2021

The season so far

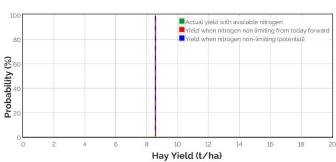
Annual rainfall to date: 329 mm GSR to date: 299 mm

7 Current GSR decile:

Current predicted PAW: 28 mm (20% full)


PAWC: 143 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: 4.9 t/ha also see graphs below Wheat sown May 20: 4.9 t/ha

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 9 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (22 mm) for the remainder of the growing season.

> 100% WUE 4.4 t/ha

3.5 t/ha 80% WUE

CONDOWIE

HART BEAT

GS37

GS45

GS11

1st tiller

early tillering

mid tillering

late tillering

end of tillering

flag lea

fully

emerged

mid booting head

emergence

CONDOWIE

Soil type: Sandy loam

Crop growth

Variety: Scepter wheat Sowing date: May 1, 2021 June 4, 2021 Emergence:

Nitrogen fertiliser: 30 kg N/ha @ seeding

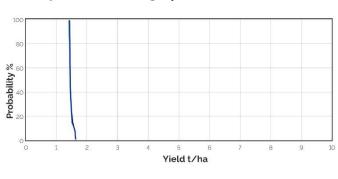
+ 40 kg N/ha July 21

Date of report: October 8, 2021

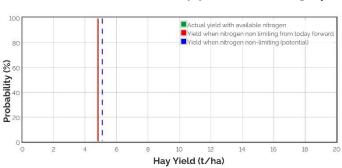
The season so far

Annual rainfall to date: 206 mm GSR to date: 181 mm Current GSR decile:

Current predicted PAW: 1 mm (1% full)


PAWC: 115 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: 1.4 t/ha also see graphs below Wheat sown May 20: 1.4 t/ha

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 8 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (24 mm) for the remainder of the growing season.

> 100% WUE 2.1 t/ha

1.6 t/ha 80% WUE

KYBUNGA

1st tiller

early tillering

mid tillering

late tillering

tillering

fully

emergeo

head

emergence

GS65

KYBUNGA

Soil type: Clay loam

Crop growth

Variety: Scepter wheat
Sowing date: May 1, 2021
Emergence: May 11, 2021

Nitrogen fertiliser: 30 kg N/ha @ seeding

+ 40 kg N/ha July 21

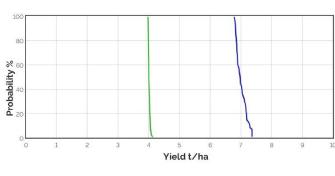
Date of report: October 8, 2021

The season so far

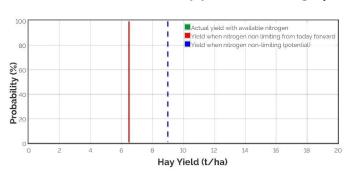
Annual rainfall to date: 314 mm GSR to date: 280 mm

Current GSR decile: 4

Current predicted PAW: 34 mm (13% full)


PAWC: 262 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: **5.5 t/ha**also see graphs below
Wheat sown May 20: **4.2 t/ha**

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 10 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (26 mm) for the remainder of the growing season.

100% WUE **4.1 t/ha**

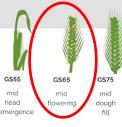
80% WUE **3.3 t/ha**

FARRELL FLAT

mid tillerina

late tillering

tillerina



fully

emerged

FARRELL FLAT

Soil type: Light clay loam

Crop growth

Scepter wheat Variety: Sowing date: May 1, 2021 Emergence: June 6, 2021

Nitrogen fertiliser: 30 kg N/ha @ seeding

+ 40 kg N/ha July 21

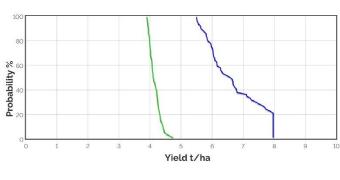
Date of report: October 8, 2021

The season so far

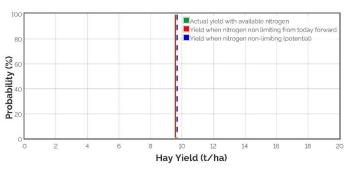
Annual rainfall to date: 325 mm GSR to date: 298 mm

Current GSR decile:

Current predicted PAW: 46 mm (27% full)


PAWC: 172 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: 5.4 t/ha also see graphs below Wheat sown May 20: 5.4 t/ha

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 8 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (22 mm) for the remainder of the growing season.

> 4.4 t/ha 100% WUE

3.5 t/ha 80% WUE

PINERY

HART BEAT

1st tiller

early tillering

mid tillerina

late tillering

tillerina

GS37 flag leaf

emerged

head

emergence

PINERY

Soil type: Silty clay loam

Crop growth

Variety: Scepter wheat
Sowing date: May 1, 2021
Emergence: June 4, 2021

Nitrogen fertiliser: 40 kg N/ha @ seeding

+ 40 kg N/ha July 21

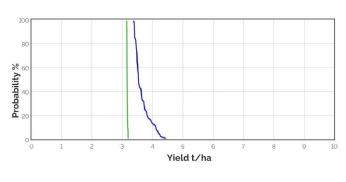
Date of report: October 8, 2021

The season so far

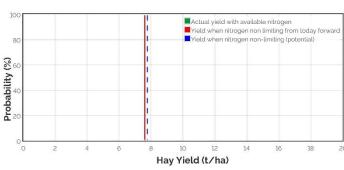
Annual rainfall to date: 265 mm GSR to date: 230 mm

Current GSR decile: 3

Current predicted PAW: 10 mm (13% full)


PAWC: 79 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: **3.4 t/ha**also see graphs below
Wheat sown May 20: **3.4 t/ha**

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 11 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (22 mm) for the remainder of the growing season.

100% WUE **3.1 t/ha**

80% WUE **2.5 t/ha**

EUDUNDA

HART BEAT

2nd leaf

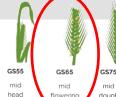
5th leaf

mid tillering

6th leaf

late tillering

tillering


1st node

GS37 flag lea

flag leaf mid booting emerged

EUDUNDA

Soil type: Gravelly loam

Crop growth

Scepter wheat Variety: Sowing date: May 1, 2021 Emergence: June 21, 2021

Nitrogen fertiliser: 30 kg N/ha @ seeding

+ 40 kg N/ha July 21

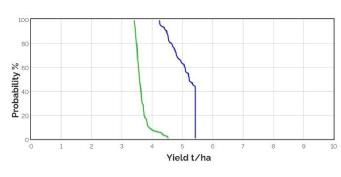
Date of report: October 8, 2021

The season so far

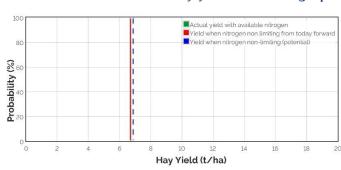
Annual rainfall to date: 341 mm GSR to date: 301 mm

Current GSR decile:

49mm (51% full) Current predicted PAW:


PAWC: 96 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: 4.4 t/ha also see graphs below Wheat sown May 20: 4.4 t/ha

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 12 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (23 mm) for the remainder of the growing season.

> 4.5 t/ha 100% WUE

3.6 t/ha 80% WUE

TARLEE

HART BEAT

emergence

5th leaf

mid tillering

6th leaf late tillering

tillering

flag leaf

flag leaf

emerged

fully

emergence

TARLEE

Soil type: Sandy loam

Crop growth

Variety: Scepter wheat Sowing date: May 1, 2021 May 11, 2021 Emergence:

40 kg N/ha @ seeding Nitrogen fertiliser:

+ 40 kg N/ha July 21

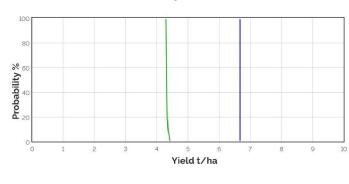
October 8, 2021 Date of report:

The season so far

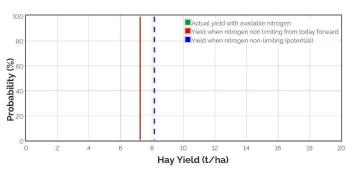
Annual rainfall to date: 319 mm GSR to date: 273 mm

Current GSR decile: 4

Current predicted PAW: 54 mm (48% full)


PAWC: 113 mm

Yield Prophet® predictions


(based on a 50% probability)

Wheat sown May 1: 5.5 t/ha also see graphs below Wheat sown May 20: 5.2 t/ha

Grain yield outcome graph

Hay yield outcome graph

These graphs show the chance of reaching the corresponding yield given weather, soil conditions and agronomic inputs to date, and historical climate data (100yrs) to simulate remainder of the season.

Yield probability curves (left graph) - display two different nitrogen scenarios. The green line displays the actual grain yield with the current soil available nitrogen. The blue line represents the grain yield potential with unlimited nitrogen (yield potential). A small difference between these two lines indicates the current soil N level is adequate for the crop to reach its yield potential. Conversely, a large difference between these two lines indicates additional N fertiliser is required for the crop to reach its yield potential.

French & Schultz predictions

This model assumes that there is 14 mm stored moisture, 110 mm of evaporation and Decile 5 rainfall (29 mm) for the remainder of the growing season.

> 4.1 t/ha 100% WUE

80% WUE 3.3 t/ha

More from Hart

OCTOBER 19, 2021 5pm at Hart

Followed by a BBQ and drinks in the Hart shed kindly supplied by event sponsor; Bayer

This event is free

SPRAY TOPPING & SEED SET PREVENTION

Glyphosate use in legumes & cereals, spray timings, mixes & spikes Phil Holmes, Platinum Ag Services

HARVEST FIRE SAFETY

Farm firefighter unit registrations, new fire ban ratings, understanding risk, weather & warnings, being prepared Representatives from the CFS & GPSA

LIMING FOR ACIDIC SOILS

Benefits, products & rates, lime movement & local trial results

Andrew Harding; Rural Solutions

GRAIN HARVEST

Practical considerations for quality, storage & marketing issues in the paddock Rebekah Starick; Pinion Advisory

Online registrations are essential:

https://hart_spring_twilight_walk_2021.eventbrite.com.au/

Contact us

Chairman
Executive Officer
Research & Extension Manager

Ryan Wood Sandy Kimber Bek Allen chairperson@hartfieldsite.org.au admin@hartfieldsite.org.au rebekah@hartfieldsite.org.au

